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RESONANT AMPLIFICATION OF INSTABILITY WAVES  
IN QUASI-SUBHARMONIC TRIPLETS 

WITH FREQUENCY AND WAVENUMBER DETUNINGS 

V.I. Borodulin, Y.S. Kachanov, D.B. Koptsev, and A.P. Roschektayev  
Institute of Theoretical and Applied Mechanics SB RAS,  

630090 Novosibirsk, Russia 

1. Introduction 
Probably the first experimental evidence of an important role of the subharmonic 

resonance in the process of the laminar-turbulent transition in adverse pressure gradient (APG) 
boundary layers was obtained in [1]. Until recently, the only available direct experimental study 
of the subharmonic resonant interactions in the APG boundary layer was performed in [2] for 
rather small values of the Hartree parameter (βH = –0.06 and –0.09). In agreement with the 
theoretical prediction, a rapid growth and subsequent saturation of subharmonic amplitudes was 
found under controlled disturbance conditions. However, the double-exponential growth 
predicted by theory has not been found, and resonant interactions with frequency and 
wavenumber detunings have not been examined. Some new results were obtained in [3] were 
all main properties of tuned resonances where studied for a moderate Hartree parameter  
βH = –0.115. Optimal parameters of resonant triplets were found, a strong dependence of the 
interaction on phase relationships was examined, and the double-exponential growth was 
discovered. However, many questions are still open. 

The goal of the present experiments was to narrow the gaps existing in this area. In 
particular, we aimed to study the resonant interactions in the presence of frequency and 
spanwise-wavenumber detunings for quasi-subharmonic modes.  

2. Experimental Procedure 
Experiments were conducted in the closed-loop low-turbulence wind tunnel T-324 of 

ITAM at the free-stream velocity Ue ≈ 9 m/s. This wind tunnel has a 4 m long test section with 
a 1 × 1 m cross-section. The free-stream turbulence level at the present experimental conditions 
was below 0.02% in the frequency range above 1 Hz. 

In general, the experimental setup was similar to that used in [3, 4]. The boundary layer 
under investigation developed on a flat plate installed horizontally in the wind-tunnel test 
section under a zero attack angle and was equipped with a flap to provide the possibility to 
control the local attack angle of the flow in the vicinity of the plate leading edge. The APG was 
induced over the plate with the help of an adjustable wall-bump mounted on the test-section 
ceiling. It was shown that the basic potential flow and the flow inside the boundary layer are 
two-dimensional (within an experimental accuracy) and correspond very well to those 
calculated for Hartree parameter βH = –0.115. 

The present experiments were performed at controlled disturbance conditions. Different 
kinds of perturbations were excited in the boundary layer by means of a universal disturbance 
source VS-II developed in [5] (see also [3]) and modified for the purposes of the present 
experiments. Three groups of regimes were investigated: 

• Main Resonance (MR) studied in [3] was reproduced again with a 2D initial wave of a 
relatively high amplitude (frequency f1 =109.1 Hz, which is close to the most linearly 
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unstable one) and a pair of oblique 3D subharmonics (frequency 2/1f = 1f /2, optimal 
for resonance spanwise wavenumbers βR = ±0.131 rad/mm) with relatively small 
amplitudes; 

• Main Resonances with frequency Detunings (MRD) with the same 2D fundamental 
wave and a pair of 3D quasi-subharmonics (with the same spanwise wavenumbers as in 
regime MR) at frequencies f = f1/2 + ∆f (were ∆f was varied from –0.9f1/2 to +0.9f1/2). 

• Main Resonances with Wavenumber Detunings (MRWD), where 4 different values of 
the subharmonic spanwise wavenumber β (at frequency f1/2) were tested in addition to 
the resonant value βR. They covered a range from 0 to 3βR. 

The streamwise velocity component was measured by a hot-wire and subjected to 
ensemble averaging (using the disturbance generator as a reference) and filtering in Fourier 
space. 

Axis x was directed downstream, z is the spanwise axis. Disturbance source was located at 
x = 300 mm (zero is at the leading edge). Spanwise position z = 500 mm corresponds to the 
experimental model centre. 

3. Frequency Detunings 
For the correct interpretation of the experimental results it is 

necessary to outline an important property of the subharmonic resonance. 
Namely, there is an optimal phase shift between the subharmonic pair 
and the fundamental wave [3]. The resonant mechanism intensifies the 
disturbance growth when the phase shift is optimal and suppresses it 
when it is orthogonal to the optimal one. This point is illustrated in Fig. 1 
where both initial and amplified subharmonic vectors are shown 
decomposed into resonant and anti-resonant components. As the result, 
the resonant interaction should provide a phase synchronisation between 
the fundamental wave and the subharmonic pair. 

The typical downstream evolution of the frequency spectra in regime MRD is shown in 
Fig. 2 for frequency detuning ∆f = –0.1f1/2. Initially (x = 350 mm) there are two peaks in the 
spectrum, one is for the fundamental frequency f1 and another — for quasi-subharmonic oblique 
waves with frequency f1/2 + ∆f. Farther downstream the resonant interaction produces a new 
peak at frequency f1/2 – ∆f (the local ‘symmetrisation’ of the spectrum with respect to the 
subharmonic frequency). Additional peaks appear at frequencies (2n+1)f1/2 ± ∆f, n = 1, 2, 3… 
This behaviour is similar to that observed in [6] in the zero pressure gradient case. 

As far as there is no any definite phase relationship between the detuned subharmonic 
modes and the fundamental wave, let us introduce a notion of an ‘effective mode’ that is 
convenient for subsequent analysis (Fig. 3). In this figure ‘left’ and ‘right’ time traces u'(t) 
corresponds to spectral peaks located to the left and right from the exact subharmonic 

 
Fig. 1. Phase 

synchronisation. 

Fig. 2. Downstream evolution of frequency spectra 
in regime MRD (∆f = –0.1f1/2) 

Fig. 3. Definition of effective subharmonic. 

resonance 

amplified 

initial 

anil-resonance 

A, % x [mm]: 
10 

300  / , Hz       0 



 41

frequency. Their sum represents a 
subharmonic wave with frequency f1/2 
and with the amplitude modulated in 
time. Its maximum appears when both 
quasi-subharmonics have phases 
optimal for interaction with the 
fundamental wave (one of these time 
moments is designated in Fig. 3 as to). 
The ‘effective subharmonic’ is the 
wave, which coincides with the ‘sum’ 
mode at the moment to but has 
constant amplitude (and phase). It is 
easy to show that the amplitude of the 
effective subharmonic is equal to sum 
of amplitudes of left and right quasi-

subharmonics, while its phase is the arithmetic mean of phases of the left and right modes. The 
notion of the effective subharmonic allows us to analyse the phase synchronism conditions in 
detuned resonances. 

Figure 4 shows amplification curves of 
harmonics (2n+1)f1/2 ± ∆f (n = 0, 1, 2), kf1 (k = 
1, 2, 3), and the effective subharmonic in case 
of a small frequency detuning (∆f = –0.1f1/2) to-
gether with the curves obtained for tuned reso-
nance (regime MR). The fundamental wave 
grows exponentially and identically in both re-
gimes (MR and MRD). Modes (2n+1)f1/2 ± ∆f 
demonstrates the double-exponential amplifica-
tion within a certain range of the x-coordinate 
with a subsequent saturation. The behaviour of 
the effective subharmonic indicates that the 
mechanisms of amplification are the same in 

both regimes. A satisfaction of the phase synchronism condition ∆φ = φ1/2 – φ1 = const. cor-
roborates this conclusion (Fig. 5). Indeed, the phase synchronisation appears gradually for all 
studied modes and the resonant phase shift ∆φ is the same in MRD and MR regimes. 

Figure 6 shows amplification coefficients for large frequency detunings (in the range ∆f = 
±0.9f1/2). Similar to the Blasius case, the resonance has a large width in the frequency spectrum 
but, in contrast to this case, the maximum growth is observed not at exact subharmonic 
frequency but at detunings of about +30%. This phenomenon has no simple explanation at 
present. The phase synchronisation for large frequency detunings is shown in Figs. 7 to 9. 
Despite both excited and ‘mirror’ (symmetric) modes have different phases in the region of 
their rapid growth (x = 530 mm), the effective mode have a constant phase (Fig. 7) and remains 
synchronised with the fundamental wave (Fig. 8). The same is true for the effective modes 
based on 3f1/2 ± ∆f and 5f1/2 ± ∆f (Fig. 9). 

4. Spanwise-Wavenumber Detunings 
The absolute value of the optimal (for the resonance) spanwise wavenumber found in [3] 

is equal to 0.131 rad/mm that corresponds to wavelength λz = 48 mm. To investigate the effect 
of the wavenumber detunings, four regimes were studied with excitation of subharmonic pairs 
with wavenumbers β = ±0.393, ±0.196, ±0.098 and 0 rad/mm, which correspond to λz = 16, 32, 
64 mm, and infinity (the latter mode is two-dimensional). Three examples of spanwise 

 
Fig. 4. Amplification curves. Notation:  

s — subharmonic, f — fundamental, d — detuning, 
eff — effective. Regime MRD. 

Fig. 5. Phase difference between amplified modes 
and  fundamental  wave  (degrees of  fundamental 

wave). See notation in Fig. 4. Regime MRD. 
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distributions of the subharmonic amplitudes and phases are given in Fig. 10 for three values of 
β for x = 510 mm. They are typical for standing waves produced by superposition of oblique 
wave-pairs propagating along the z-axis in opposite directions. 

During the resonant interaction the fundamental wave amplitude grows downstream 
exponentially (independently of β), while the subharmonics demonstrate a more rapid 
amplification, which depends on β dramatically (Fig. 11). Several subharmonic amplification 
curves are given in Fig. 12 in the double-logarithmic scale. As one can see, the subharmonic 
amplitudes increase in a linear way (in this scale) in ranges of their most rapid growth. This 
double-exponential behaviour was predicted by theory for tuned resonances but never observed 
for wavenumber detuned cases. In the range up to x ≈ 500 mm the amplitude evolution of mode 
with β = 0.393 rad/mm is quite different from others (Fig. 11). The 2D subharmonic mode 
growth is much slower compared to 3D ones. However, approximately the same behaviour is 
observed at this stage when the fundamental mode is switched off. In absence of the 
fundamental wave the growth of all subharmonics was rather slow and mainly exponential one. 

In MRWD regimes the phase synchronisation was observed similar to regimes MR and 
MRD (Fig. 13). In these plots the phase shifts ∆φ between the subharmonic pairs and the 
fundamental mode are shown for two cases in each presented regime. The solid symbols 
correspond to regimes with simultaneous excitation of the subharmonic and fundamental 
modes, while the open symbols were obtained at their separate excitation, i.e., when these 
waves developed independently of each other. In case of tuned resonance (regime MR, β = 
0.131 rad/mm, Fig. 13right) the subharmonic mode was phase locked (i.e., in the synchronism) 
with the fundamental one in the whole studied streamwise range and the resonant phase shift is 
close to 180° similar to the case of frequency detuned resonances (Fig. 5). Its ‘natural’ 
behaviour (in absence of the fundamental wave) is the same in the beginning (because this is 
tuned resonance) but different in the end due to change of the basic-flow parameters (and the 
disturbance frequency parameters). The synchronism of the subharmonics with smaller 
wavenumber (β = 0.098) is also present. Despite it gets worse fare downstream compared to the 
case of tuned resonance, the phase difference of the ‘naturally’ developing subharmonic 

Fig. 6. Amplification coefficients of quasi-
subharmonic modes vs. excitation frequency. MRD.

Fig. 7. Phases of quasi-subharmonic modes vs. 
excitation frequency. Regime MRD. 

 
Fig. 8. Phase shift between quasi-subharmonic 

modes and fundamental wave vs.  
excitation frequency. Regime MRD. 

 
Fig. 9. Phase shift between effective mode 5f1/2 and 

fundamental wave vs. excitation frequency.  
Regime MRD. 
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Fig. 10. Spanwise distributions of amplitudes (left) and phases (right) of subharmonics  

in case of tuned (β = 0.131 rad/mm) and detuned resonance. Regime MRWD. 

deviates stronger from the resonant value in the end of the studied range. As to the 2D 
subharmonic (β = 0), it is not synchronised at all and not amplified by the resonance (see 
Fig. 11). For positive wavenumber detunings (Fig. 13left) the phase synchronisation is not 
observed in the beginning but it appears in the streamwise ranges where the resonance starts to 
amplify the subharmonics (see Fig. 11). This results is explained by growth of the fundamental 
wave and, consequently, by a downstream enhancement of the resonant interaction, which leads 
to an extension of the spanwise wavenumber range of the resonantly amplified subharmonics. 

The dependence of the subharmonic amplification on its spanwise wavenumber is 
summarised in Figs. 14 and 15. Figure 14 shows the integral subharmonic amplification factors 
for all studied wavenumbers and their downstream evolution. It is seen that at all stages of 
evolution the largest subharmonic amplification is observed for the tuned resonance  (regime 
MR, β = 0.131 rad/mm), while for higher and lower spanwise wavenumbers the growth factors 
are lower, in contrast to the case with frequency detunings (Fig. 6). Figure 16 shows local 
subharmonic increments determined approximately in the centre of the interaction region (x = 
530 mm) in regimes with and without interaction (i.e. in presence and in absence of the 

 
Fig. 11. Downstream evolution of disrurbances  
at fundamental and subharmonic frequencies  

with different spanwise wavenumbers. MRWD. 
Fig. 12. Double-exponential growth of disturbances 

at subharmonic frequencies. Regime MRWD. 

 
Fig. 13. Phase difference between fundamental and subharmonic modes in case of their  
simultaneous (resonance ON, regime MRWD) and separate (resonance OFF) excitation.  

Left — large spanwise wavenumbers; right — resonant (β = 0.131 rad/mm) and low wavenumbers. 
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fundamental wave). It is seen that the resonance enhances significantly the increments for all 
studied subharmonic wavenumbers excluding the 2D subharmonic case (β = 0). Both plots 
(Figs. 14 and 15) demonstrate the important property of studied resonance: it takes place in a 
broad band of values of the subharmonic spanwise wavenumber. 

5. Conclusions 
• The mechanisms of resonant growth of quasi-subharmonic TS-waves in an APG boundary 

layer is studied in a wide range of frequency and spanwise-wavenumber detunings. 
• It is found that in cases of detuned resonances these mechanisms are the same as in case of 

tuned resonance and very similar to those studied previously in the Blasius basic flow. 
• The double-exponential resonant amplification of 3D quasi-subharmonic waves is found in 

presence of 2D fundamental wave in wide ranges of frequency and wavenumber detunings. 
• In streamwise ranges where this amplifications takes place the resonance phase 

synchronism condition is found to be satisfied in frequency ranges around f1/2, 3f1/2 and 5f1/2 
and in a wide spanwise-wavenumber range (for the exact subharmonic frequency). 

• The resonant growth of the wavenumber detuned subharmonics is found to be always 
weaker than in the tuned case. Meanwhile, it turned out that the resonant amplification is 
greater for frequency detuned subharmonics with positive detunings compared to the tuned 
resonance (in contrast to the Blasius case). 
This work was supported by the Russian Foundation for Basic Research (Grant  

No. 00-01-00835). 
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Fig. 15. Growing rates of subharmonics with 

different spanwise wavenumbers in the region of 
double-exponential amplification (x = 530 mm). 

 
Fig. 14. Subharmonic amplification coefficients 

for different downstream locations  
and spanwise wavenumbers. Regime MRWD.
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